Commission Lac - Collège Usagers du 17 décembre 2020 Compte rendu - PJ n°5

Contamination en HAP et ETM a de trois sites littoraux du lac d'Annecy

Dr Victor Frossard¹, Pr Emmanuel Naffrechoux²

¹ UMR 42 CARRTEL, Université Savoie Mont Blanc, 73376 Le Bourget du Lac, France

² EA1651 LCME, Université Savoie Mont Blanc, 73376 Le Bourget du Lac, France

Crédit photos F. Moreau © Free vision/sialis-eau

Janvier 2020

<u>Prélèvement</u>

Financement

Résumé

Une étude des sédiments littoraux du lac d'Annecy menée en 2018 a mis en évidence une contamination variable en hydrocarbures aromatiques polycycliques (HAP) et en éléments traces métalliques (ETM) de la zone littorale du lac d'Annecy. Le SILA a souhaité approfondir les investigations par la présente étude, ayant pour objectif d'évaluer la variabilité spatiale de la contamination en HAP et ETM au niveau de 3 sites (Puya, Chavoires et Doussard). Pour chacun de ces 3 sites, 15 prélèvements de sédiment de surface ont été réalisés début octobre 2019 et les concentrations en 16 HAP et 8 ETM ont été déterminées (2 HAP et 3 ETM présentaient des concentrations systématiquement inférieures aux limites de quantification des méthodes normalisées utilisées).

L'intensité de la contamination en HAP et ETM est similaire en 2018 et 2019 pour le site Doussard et significativement plus faible en 2019 pour le site Puya. Pour le site Chavoires, la contamination est plus faible en HAP et plus forte en ETM en 2019. Ces différences peuvent en partie s'expliquer par le positionnement géographique (légèrement distinct) et la profondeur (plus importante en 2019 qu'en 2018) des lieux de prélèvement.

Les sites Puya et Chavoires sont caractérisés par la présence de HAP lourds et de plus fortes concentrations en Cuivre, Chrome, Zinc et Plomb suggérant des apports locaux issus de lessivage du réseau routier (D1508) et des surfaces imperméabilisées du bassin-versant urbanisé (Annecy-le-Vieux). Cette assertion est supportée par la modélisation de distribution spatiale des contaminants. Le site Doussard est caractérisé par des HAP légers et des concentrations significatives en Fer, pouvant provenir respectivement de dépôts atmosphériques et du drainage du bassin-versant rural de l'Ire. En moyenne, les sites Puya et Chavoires sont respectivement 5 fois et 2 fois plus contaminés en HAP par rapport au site Doussard (excepté pour le Naphtalène et le Phénanthrène). Le site Chavoires est 2 à 4 fois plus contaminé en Chrome, Cuivre, Zinc et Plomb que le site Doussard, alors que le site Puya présente des concentrations similaires à Doussard sauf pour le Plomb (2 fois plus contaminé). Les concentrations en Aluminium sont similaires entre les sites.

En absence de réglementation française spécifique au risque écotoxique de ces substances, une approche d'évaluation du risque pour la faune aquatique a été retenue. Elle consiste à diviser les concentrations mesurées par les concentrations à effet probable (Probable Effect Concentration) définies dans la littérature scientifique. La moyenne des ratios (PEC moyenne) ou la somme des ratios (PEC somme) permet d'évaluer le risque de toxicité du sédiment pour les organismes aquatiques.

Les sites Puya et Chavoires présentent des concentrations en contaminants (HAP ou ETM) suffisantes pour induire des effets toxiques pour les organismes aquatiques, et ainsi altérer la qualité écologique de la zone littorale des sites concernés. Les sources probables de ces contaminants proviendraient du ruissellement sur les surfaces imperméabilisées du bassin versant urbain ou des voies de circulation routière.

Le site de Doussard est caractérisé par des concentrations en HAP et ETM ne représentant pas de risque de toxicité pour les organismes lacustres.

En combinant les résultats des études 2018 et 2019, il apparait que la contamination de la zone littorale du lac d'Annecy demeure plutôt faible sur la grande majorité du pourtour du lac, mais se révèle significative pour 2 zones de mesure situées dans la partie Nord.

Dès lors, l'ensemble des actions visant à limiter les apports de contaminants à la zone littorale lacustre seront bénéfiques, 1/ tant pour maintenir la qualité du littoral annécien (principe de non déterioration des masses d'eau), 2/ que pour reconquérir - à terme - la qualité des quelques secteurs qui sont aujourd'hui les plus impactés. Ceci en complément des nombreuses actions de conservation et de restauration écologique déjà menées par les acteurs locaux.

Sommaire

Introduction	1
Matériels et méthodes	3
Sites d'échantillonnage et modalités de prélèvement	
Caractérisation des sédiments et de leurs contaminations	5
Evaluation du risque toxique	7
Résultats et discussion	9
Caractéristiques des sédiments étudiés	9
Intensité et origine possible de la contamination des différents sites	9
Les HAP	9
Les ETM	
Variabilité spatiale de la contamination	17
Les HAP	17
Les ETM	17
Risque écologique de la contamination en HAP et ETM des sédiments superficiels	
Les HAP	
Les ETM	19
Conclusion	
Bibliographie	
Annexes	24
Variabilité spatiale des HAP totaux par site	
Variabilité spatiale des ETM par site	
Données brutes HAP et ETM des différents sites	
Date des prélèvements, localisation géographique et profondeurs pour l'ense échantillons	mble des 38

Liste des figures

Figure 1: Localisation des trois sites d'étude A) et distribution spatiale des points de prélèvement de sédiment
Figure 2: Délimitation (en rouge) des surfaces imperméabilisées raccordées aux canalisations débouchant au Lac d'Annecy sur le site « Chavoires » (SILA 2019)
Figure 3 : Structures moléculaires, formules condensées et acronymes des 16 HAP 6
Figure 4 : Variations des concentrations de chaque molécule HAP quantifiable 10
Figure 5 : ACP sur données centrées réduites HAP. L'insert représente la contribution de chaque HAP aux axes de l'ACP
Figure 6 : Profil des HAP pour les trois sites. Les HAP sont rangés par poids moléculaire croissant (les 6 HAP légers sont à gauche, jusqu'au Pyrène inclus)12
Figure 7 : Variations des concentrations en ETM pour les différents sites14
Figure 8 : Analyse en composantes principales (ACP) des données ETM. L'insert représente la contribution de chaque ETM aux axes de l'ACP15
Figure 9: Evaluation du risque écologique lié aux HAP selon les PEC (probable effect concentration). Les lignes rouges séparent les niveaux de risque : < 0.1 = risque négligeable, 0.1 < x < 0.5 = risque possible, 0.5 < x < 1 = risque probable, > 1 = risque avéré
Figure 10: Evaluation du risque écologique lié aux HAP en considérant la moyenne et la somme des ratios HAP/PEC. Les lignes rouges représentent les niveaux de risque : < 0.1 = risque négligeable, 0.1 < x < 0.5 = risque possible, 0.5 < x < 1 = risque probable, > 1 = risque avéré
Figure 11 : Evaluation du risque écologique pour les ETM selon les valeurs de PEC. Les lignes rouges représentent les niveaux de risque : < 0.1 = risque négligeable, 0.1 < x < 0.5 = risque possible, 0.5 < x < 1 = risque probable, > 1 = risque avéré
Figure 12 : Evaluation du risque lié à la contamination en ETM en considérant la moyenne et la somme des ETM. Les lignes rouges représentent les niveaux de risque : < 0.1 = risque négligeable, 0.1 < x < 0.5 = risque possible, 0.5 < x < 1 = risque probable

Liste des tableaux

Tableau 1 : Qualité des sédiments (SEQ-EAU v2, 2003)	8
Tableau 2 : Concentrations moyennes en ETM (mg.kg ⁻¹ MS) mesurées en 2018 et 2019 (*nq = non	
quantifié, *lq = limite de quantification)	16

Liste des annexes

Annexe 1 : Valeur de concentration d'effet probable (PEC) des contaminants	25
Annexe 2 : Variations des concentrations en HAP normalisées à la concentration en matière organique (MO) pour les différents sites.	. 26
Annexe 3 : Facteurs d'enrichissement HAP et ETM	27
Annexe 4 : Données brutes HAP et ETM des différents sites	34
Annexe 5 : Date des prélèvements, localisation géographique et profondeurs pour l'ensemble des échantillons	. 38

Introduction

Le lac d'Annecy présente actuellement une bonne à très bonne qualité écologique pour de nombreux indicateurs tant chimiques que biologiques (Frossard, 2019). Historiquement, le compartiment pélagique a fait l'objet des principales investigations scientifiques mettant en évidence un bon fonctionnement écologique du lac. Il peut être caractérisé par une forte production piscicole au regard de la charge actuelle en nutriments et de la biomasse phyto-planctonique associée dans la colonne d'eau. La caractérisation de la contamination chimique des zones littorales n'a que récemment été abordée. Les concentrations en éléments traces métalliques (ETM) et en hydrocarbures aromatiques polycycliques (HAP) ont été mesurées dans le sédiment superficiel et des mollusques filtreurs (i.e. corbicule, *Corbicula fluminea*) au niveau d'une vingtaine de sites, distribués sur l'ensemble de la ceinture littorale du lac pour la première fois en 2018 (Frossard, 2018).

Ces deux familles de contaminants ont été étudiés car ils sont présents dans l'ensemble des écosystèmes aquatiques à des concentrations très variables. Les HAP sont des polluants organiques persistants semi-volatils, principalement issus des phénomènes de combustion incomplète de la matière organique. En France, leurs émissions dans l'atmosphère sont estimées à 65% d'origine « secteur résidentiel » (combustion des appareils de chauffage et feux ouverts de déchets verts ou autres), 14% « transport » (combustion de carburants fossiles), 11% « industrie manufacturière et transformation d'énergie » et 10% « agriculture/sylviculture » (CITEPA, 2019). Ils peuvent être transférés au sein du lac par dépôt direct depuis l'atmosphère ou après lessivage des sols et des surfaces imperméabilisées. Ces molécules organiques sont toxiques pour les organismes aquatiques. Elles sont faiblement biodégradées par les micro-organismes du sédiment lacustre et persistent donc dans l'environnement. Les ETM sont diffusés vers l'atmosphère lors de processus naturels comme l'érosion éolienne, les activités volcaniques, les embruns marins et les feux de forêts. Cependant, les activités anthropiques telles que la combustion de combustibles fossiles, l'incinération des ordures ménagères et industrielles, les industries du ciment et les fonderies, l'entretien des routes, le chauffage et le trafic automobile (combustion du carburant), la corrosion des véhicules, l'abrasion des freins, pneumatiques, revêtements routiers et la dégradation des pots catalytiques conduisent à une augmentation de leurs concentrations dans les compartiments environnementaux (air, eau, sol). Les ETM sont par nature non biodégradables et persistent donc dans l'environnement lacustre en s'accumulant majoritairement dans le sédiment. Ils peuvent s'avérer toxiques à faible dose pour les organismes aquatiques, y compris des oligo-éléments comme le Cuivre (Cu) et Zinc (Zn) à de plus fortes concentrations. L'étain (Sn) a été largement utilisé dans les revêtements antisalissure des coques de bateaux (Hoch, 2001). Les métaux Cadmium (Cd), Plomb (Pb), Cu et Zn sont les éléments

les plus souvent dosés dans l'environnement pour caractériser la pollution métallique liée aux activités urbaines (trafic automobile, ruissellement sur toitures et voiries, rejets industriels).

Lors de l'étude de 2018, la majorité des sites présentaient une contamination relativement faible et un risque écologique peu probable pour les polluants étudiés. Cependant, pour quelques sites, les concentrations en contaminants étaient significatives. L'étendue spatiale de ces contaminations, localement élevées, n'a pas été abordée au cours de cette première étude.

Dans ce contexte, des investigations complémentaires, objet de ce rapport, ont été commanditées par le SILA. Elles visent à :

- confirmer ou infirmer la contamination des sites identifiés comme les plus pollués lors de l'étude réalisée par Frossard en 2018,
- 2) déterminer la variabilité spatiale de la contamination pour ces sites,
- 3) rechercher l'origine possible des HAP et ETM présents au sein des sites
- évaluer le risque écotoxicologique des sédiments pour les organismes aquatiques au regard de la contamination en ETM et HAP.

Matériels et méthodes

Sites d'échantillonnage et modalités de prélèvement

Trois sites d'échantillonnage (Chavoires, Puya et Doussard) ont été retenus d'après les résultats obtenus par Frossard en 2018 du fait de leurs différences de contaminations en ETM et HAP. Pour chaque site, les prélèvements de sédiment ont été réalisés les 7 et 8 octobre 2019, en 15 points, espacés de 20 mètres les uns des autres, répartis sur trois linéaires de 5 points parallèles à la rive, soit une surface rectangulaire de 3200 m², située à une distance à la rive variant entre 40 et 60 mètres selon les sites pour éviter les macrophytes ou les fonds lacustres en galets/graviers. (Fig. 1B, C, D).

Le site « Puya », référencé S11 par Frossard (2018), présentait les plus fortes concentrations en HAP et pour certains ETM. L'origine de cette contamination est supposée d'origine véhiculaire terrestre : les eaux de ruissellement de chaussée RD1508 (rue des Marquisats) s'écoulent directement au lac. En 2019, les prélèvements ont été réalisés par plongeurs équipés de bouteilles, à environ 50 mètres au Sud-Est du point S11 de 2018, afin de ne pas dépasser une profondeur supérieure à 40m pour l'ensemble des points du transect le plus éloigné de la rive.

Le site « Chavoires », référencé S16 par Frossard (2018), présentait des concentrations non négligeables en HAP et en ETM. Deux buses béton débouchent au lac au niveau du carrefour de la rue de Verdun et de l'avenue de Chavoires, collectant le ruisseau de la Pesse mais aussi les eaux de ruissellement des surfaces imperméabilisées de la partie Est de la commune d'Annecy-le-Vieux. En 2019, les prélèvements ont été réalisés à une distance de moins de 50 m du point S16.

Le site « Doussard », référencé S8 par Frossard (2018), constitue la référence basse en terme de contamination HAP et ETM ; cette zone du lac était la moins contaminée de l'étude précédente. Elle est située à l'extrémité sud du Petit-Lac d'Annecy. Les seules sources de contamination en HAP et ETM supposées sont les dépôts atmosphériques, les usages nautiques du lac et le lessivage du bassin versant (rural) de l'Ire. En 2019, les prélèvements ont été réalisés à une distance de moins de 50 m du point S8.

Figure 2: Délimitation (en rouge) des surfaces imperméabilisées raccordées aux canalisations débouchant au Lac d'Annecy sur le site Chavoires (SILA 2019).

Sur chaque point d'échantillonnage, le sédiment a été conditionné dans des flacons de verre préalablement calcinés à 550°C, stockés fermés puis ouverts sur site par un plongeur (société Sialis) équipé de gants néoprène rincés à l'eau du site. Pour chacun des 15 points d'échantillonnage, un volume d'environ 1 litre de sédiment de surface (5 premiers centimètres de sédiment supposés soumis à la bio-turbation) est prélevé sur une superficie comprise entre 0,1 et 0,5 m².

Les flacons, fermés sous-eau par bouchon métallique à joint plastique, sont ramenés à terre puis tamisés à 2 mm (tamis inox Fischer Scientific). La fraction de granulométrie inférieure à 2mm est transférée en flacon polyéthylène, immédiatement stockée en glacière à 4°C puis transportée au laboratoire en vue des analyses HAP et ETM à proprement parler.

Les concentrations en HAP et ETM données par la suite correspondent donc aux concentrations dans la fraction granulométrique inférieure à 2 mm du sédiment de surface.

Caractérisation des sédiments et de leurs contaminations

La teneur en matière organique des sédiments a été déterminée par perte au feu à 550°C et gravimétrie (selon la norme NF EN 13039). La granulométrie du sédiment a été mesurée par granulométrie à diffraction laser selon la norme NF ISO 13320-1.

Les 16 HAP définis prioritaires par l'US-EPA (Figure 3) ont été dosés par spectrométrie de masse selon la norme XP X33-012 après extraction sous ultrasons et séparation chromatographique en phase gazeuse.

Figure 3 : Structures moléculaires, formules condensées et acronymes des 16 HAP de la liste US-EPA

Le dosage de 8 ETM (Al, Cd, Cr, Cu, Sn, Fe, Pb, Zn) a été réalisé par spectrométrie d'émission atomique à plasma à couplage inductif (ICP/AES) selon la méthode normalisée NF EN ISO 11885 après digestion des sédiments à l'eau régale sous micro-ondes (norme NF EN 16174). Le dosage du mercure (Hg) a été réalisé par spectrométrie d'absorption atomique (AAS) au chlorure staneux (norme NF EN ISO 12846) après digestion des sédiments à l'eau régale sous micro-ondes sous micro-ondes (norme NF EN ISO 12846) après digestion des sédiments à l'eau régale sous micro-ondes (norme NF EN 16174).

La limite de quantification de chaque HAP est égale à 0,05 mg kg⁻¹ de sédiment sec. Pour les ETM, les limites de quantification sont égales à 5 mg ETM kg⁻¹ de sédiment sec à l'exception du Cadmium (2 mg Cd kg⁻¹ de sédiment sec) et du Mercure (0,5 mg Hg kg⁻¹ de sédiment sec). Les dosages présentant

des concentrations en dessous des limites de détection des techniques analytiques utilisées ont été estimés à une valeur égale à la limite de détection divisée par 2 d'après Croghan et Egeghy (2003).

Afin de visualiser les différences de contamination entre les trois sites, une analyse en composante principale (ACP) a été réalisée de façon distincte pour les HAP et les ETM avec des concentrations centrées et réduites (moyenne = 0 et variance = 1).

Pour chaque site, la structure spatiale de la contamination de la somme des HAP et de chaque ETM a été modélisée par interpolation spatiale entre les points d'échantillonnage par le biais d'un krigeage ordinaire basé sur un variogramme empirique considérant un modèle de structure spatiale de type exponentielle.

Les concentrations brutes en ETM et HAP et les caractéristiques de chaque échantillon au sein des trois sites étudiés sont fournis en annexes « Données brutes HAP et ETM des différents sites » et « Date des prélèvements, localisation géographique et profondeurs pour l'ensemble des échantillons ».

Evaluation du risque toxique

Le risque toxique de la pollution sédimentaire des différents sites d'étude pour les organismes aquatiques a été évalué par le biais d'une approche de ratios confrontant les concentrations en ETM et HAP du sédiment à des concentrations de référence. Cette approche permet ainsi d'évaluer l'effet toxique combiné de plusieurs contaminants dans le sédiment, couramment dénommé « effet cocktail ».

Les concentrations de référence pour les ETM et les HAP considérées dans cette étude ont été les concentrations PEC (« Probable Effect Concentration »)(Annexe 1). La PEC d'un contaminant est définie comme la concentration dans le sédiment au-dessus de laquelle des effets toxicologiques néfastes sont attendus sur des invertébrés aquatiques. L'indice PEC_{moy} pour un échantillon est la moyenne des ratios entre les concentrations de chaque contaminant et leurs PEC (Long et MacDonald, 1998). Cet indice est utilisé comme une métrique synthétique du risque écotoxicologique d'un échantillon dans un contexte de multi-contamination. A notre connaissance, aucune PEC n'est actuellement disponible pour l'étain (Sn) dans la littérature scientifique. Cet élément n'a donc pas été intégré dans le calcul des indices PEC.

Les sédiments sont ainsi classés du point de vue du risque écotoxicologique comme suit : 1) PEC_{moy} est inférieur à 0,1 : ne présentant pas d'effets écotoxicologiques, 2) 0,1 < PEC_{moy} < 0,5 : présentant des effets écotoxicologiques possibles et 3) PEC_{moy} > 0,5 : présentant des effets écotoxicologiques

probables (Long et MacDonald, 1998; MacDonald et al., 2000). Complémentairement, les ratios entre les concentrations de chaque contaminant et leurs PEC ont été sommés (PEC_{somme}) afin de refléter un possible effet additif de la contamination sur les organismes aquatiques. L'évaluation du risque écotoxicologique pour les PEC_{somme} est le même que pour les PEC_{moy} cité précédemment.

Pour finir, les concentrations des sites en ETM ont été comparées aux valeurs-guide du Système d'Evaluation de la Qualité des Eau (SEQ-EAU V2, 2003) (Tableau 1).

	Cd	Cr	Cu	Hg	Ni	Pb	Zn
Très bon	<0.1	<4.3	<3.1	<0.02	<2.2	<3.5	<12
Bon	0.1-1	4.3-43	3.1-31	0.02-0.2	2.2-22	3.5-35	12-120
Moyen	1-5'	43-110	31-140	0.2-1	22-48	35-120	120-460
Médiocre	>5	>110	>140	>1	>48	>120	>460

Tableau 1 : Qualité des sédiments (SEQ-EAU v2, 2003) au regard de la concentration des ETM (mg.kg⁻¹)

Résultats et discussion

Caractéristiques des sédiments étudiés

Les sédiments sont globalement homogènes au sein d'un même site. Toutefois, entre les sites, la surface spécifique des particules de sédiment varie en moyenne du simple au double entre Puya et Chavoires (Annexe « Données brutes HAP et ETM des différents sites »). Plus la surface spécifique est élevée, plus la capacité du solide à adsorber des contaminants est élevée. La composition en matière organique du sédiment influence également la capacité de sorption des ETM et des HAP au sédiment. Plus les sédiments sont riches en matière organique, plus leur capacité à « fixer » ces polluants augmente. Le produit de ces deux caractéristiques physico-chimiques des sédiments permet d'évaluer leur capacité à « piéger » les ETM et HAP. La valeur moyenne de ce produit pour les différents échantillons de chaque site augmente de Chavoires (10^{3,41}) à Doussard (10^{3,55}) et Puya (10^{3,64}). Ainsi, pour une même concentration d'un contaminant dans le milieu aquatique, les sédiments du site Puya présentent une capacité de piégeage théoriquement la plus élevée par rapport aux sites de Doussard et Chavoires.

Intensité et origine possible de la contamination des différents sites

Les HAP

Les deux HAP légers Acénapthylène et Fluorène, ayant une faible capacité de sorption sur le sédiment en raison de leur hydrophobie plus faible, sont non quantifiables dans l'ensemble des échantillons du fait de concentrations trop faibles. Pour les 14 autres HAP, les concentrations diffèrent fortement entre les trois sites d'étude avec des concentrations relativement similaires et limitées pour les sites Doussard et Chavoires et plus fortes pour le site Puya (Figure 4). Le Naphtalène et dans une moindre mesure le Phénanthrène se distinguent de cette organisation générale avec de plus fortes concentrations au niveau du site Doussard. Les tendances et interprétations détaillées ciaprès sont similaires à celles pouvant être faites en considérant une normalisation à la matière organique des HAP (Annexe 2).

Il en résulte un faible enrichissement (calculé comme le rapport entre la concentration d'un contaminant dans le sédiment prélevé en un point des sites Chavoires ou Puya et la concentration moyenne du contaminant mesurée sur l'ensemble des points du site Doussard, considéré comme site de référence), pour la plupart des HAP pour le site Chavoires de l'ordre de 1 à 2 par rapport au site Doussard. En revanche, pour le site Puya l'enrichissement est plus variable et important, généralement entre 2,5 et 5 mais pouvant atteindre des valeurs de plus de 15 (Annexe 3). Le

Naphtalène et le Phénantrène sont en plus fortes concentrations pour le site Doussard par rapport aux deux autres sites (Annexe 3).

Figure 4 : Variations des concentrations de chaque molécule HAP quantifiable pour les différents sites.

L'ACP représente plus de 90% de la variabilité de la contamination en HAP pour l'ensemble des échantillons des différents sites (Figure 5) et soutient les interprétations préalablement faites d'après l'analyse individuelle des HAP. L'axe 1 rend principalement compte d'un gradient de concentrations pour la plupart des HAP avec les échantillons du site Puya plus fortement contaminés et différant fortement des deux autres sites. Il est possible de noter une plus forte variabilité dans la composition en HAP des échantillons Puya par rapport aux autres sites (plus forte dispersion sur le plan de l'ACP). L'axe 2 permet de différencier les sites Chavoires et Doussard principalement du fait de leur différence de concentrations en Naphtalène et dans une moindre mesure en Phénanthrène qui caractérisent le site Doussard. Il apparait toutefois que trois échantillons de Doussard sont similaires dans leurs composition incomplète de matière carbonée (par ex. pétrole, essence). Il peut donc être transporté par voie atmosphérique sur des centaines de kilomètres (Jia et Batterman 2010). Le site Puya, et dans une moindre mesure le site Chavoires, sont caractérisés par des HAP lourds, issus des processus de combustion mais aussi d'origine pétrolière (par ex. hydrocarbures, huiles, asphalte et produits bitumineux).

Figure 5 : ACP sur données centrées réduites HAP. L'insert représente la contribution de chaque HAP aux axes de l'ACP.

L'analyse des profils moyens en HAP au niveau des différents sites (Fig. 6) converge avec les analyses précédentes, mettant en évidence des profils similaires pour les deux sites Chavoires et Puya avec une prédominance de HAP lourds. Ces profils correspondent à ceux observés pour des eaux de ruissellement de chaussées (Lamprea Maldonado 2009) et reflètent ainsi la source très probable d'apport routier (ruissellement d'eaux sur des surfaces bitumées soumises à la circulation véhiculaire). Ces profils diffèrent de celui du site Doussard, pour lequel prédominent le Phénantrène, le Naphtalène et le Fluoranthène. Le profil de Doussard est comparable à celui observé dans les sédiments lacustres sous influence d'apports atmosphériques ayant subi un transport sur de longue distance ou de ruissellements sur des sols peu anthropisés (Poma et al. 2017).

Figure 6 : Profil des HAP pour les trois sites. Les HAP sont rangés par poids moléculaire croissant (les 6 HAP légers sont à gauche, jusqu'au Pyrène inclus).

En considérant les HAP totaux, les concentrations sont très similaires à celles mesurées par Frossard (2018) pour le site Doussard, inférieures mais du même ordre de grandeur pour le site Chavoires et significativement inférieures pour le site Puya. Frossard avait mesuré les concentrations de 14 HAP (les 16 de la liste US-EPA moins le Naphtalène et l'Acénaphtylène, molécule non quantifiable en 2019), avec des valeurs de :

- 1068 $\mu g \Sigma_{14HAP} kg^{-1}$ sur le site S8 en 2018, pour 723 $\mu g \Sigma_{16HAP} kg^{-1}$ en moyenne avec une valeur maximale de 1054 $\mu g \Sigma_{16HAP} kg^{-1}$ au site Doussard en 2019
- 5085 $\mu g \Sigma_{14HAP} \text{ kg}^{-1}$ sur le site S16 en 2018, pour 914 $\mu g \Sigma_{16HAP} \text{ kg}^{-1}$ en moyenne avec une valeur maximale de 1324 $\mu g \Sigma_{16HAP} \text{ kg}^{-1}$ au site Chavoires en 2019
- 28818 μgΣ_{14HAP} kg⁻¹ sur le site S11 en 2018, pour 2062 μgΣ_{16HAP} kg⁻¹ en moyenne avec une valeur maximale de 5493 μgΣ_{16HAP} kg⁻¹ au site Puya en 2019.

Les concentrations plus élevées mesurées en 2018 peuvent s'expliquer par une localisation légèrement différente des points de prélèvements. Les prélèvements en 2018 avaient été réalisés plus proche de la rive du lac et sous moins grande profondeur, en raison des conditions d'échantillonnage (plongée en apnée).

Les concentrations en HAP mesurées au site de Doussard (en moyenne 723 \pm 125 µg/kg) sont similaires à celles mesurées dans des lacs isolés des sources de pollution locales, aux bassins versants non anthropisés, distants des lieux d'émission des HAP (Lallée 2009). Ce résultat renforce la possibilité de considérer ce site comme « référence » vis-à-vis de la contamination littorale du lac d'Annecy.

Pour comparaison, les concentrations mesurées dans des sédiments superficiels (à la fois en zone littorale et en zone profonde) du lac Léman en 2015 varient entre 230 $\mu g \Sigma_{12HAP} kg^{-1}$ et 1669 $\mu g \Sigma_{12HAP} kg^{-1}$ (Loizeau, 2017). Pour la zone littorale du lac du Bourget (prélèvements en 2016), les concentrations varient de 4 à 3497 $\mu g \Sigma_{15HAP} kg^{-1}$ (Lécrivain, 2017).

Les ETM

Le cadmium (Cd) et le mercure (Hg) ne sont pas quantifiables pour l'ensemble des prélèvements réalisés en 2019, quel que soit le site d'étude, en raison de la limite de quantification trop élevée de la méthode normalisée utilisée. Leurs concentrations sont donc respectivement inférieures à 2 μ g g⁻¹ pour Cd et 0,5 μ g g⁻¹ pour Hg. L'étain (Sn) n'est quantifiable qu'en un point du site Puya, à une concentration de 6 μ g g⁻¹ (pour une limite de quantification à 5 μ g g⁻¹). Ce point est jugé non significatif.

Les autres ETM (Al, Cr, Cu, Fe, Pb et Zn) sont systématiquement quantifiables pour tous les points échantillonnés. Les valeurs mesurées sont en moyenne différentes d'un site à l'autre, avec des niveaux les plus faibles pour Doussard (sauf pour Fe) et les plus élevées pour Chavoires (Figure 7). Le site Puya présente des concentrations généralement intermédiaires entre les deux sites, voire similaires à celles de Doussard. Les sites Chavoires et Puya sont respectivement 2 à 4 fois et 1 à 2 fois plus contaminés que le site Doussard pour la plupart des ETM. Le site Puya se distingue des autres sites avec une plus forte concentration en Pb (facteur d'enrichissement d'environ 3 par rapport à Doussard). Les facteurs d'enrichissement normalisés à l'Aluminium présentent les mêmes tendances que les facteurs d'enrichissement non normalisés (Annexe 3).

Figure 7 : Variations des concentrations en ETM pour les différents sites.

L'ACP, qui rend compte de plus de 70% de la variance de la contamination en ETM sur l'ensemble des échantillons des trois sites, reflète clairement ces différences inter-sites (Figure 8). Un gradient de contamination en Cu, Cr et Zn peut être identifié au niveau de l'axe 1, singularisant le site Chavoires, le plus contaminé par ces 3 ETM. Les deux autres sites se distinguent principalement sur l'axe 2, pour lequel le site Puya est caractérisé par des concentrations relativement fortes en Pb, et dans une moindre mesure en Al, alors que le site Doussard est caractérisé par des concentrations élevées en Fe et faibles pour les autres ETM. De plus, la contamination du site Doussard est particulièrement homogène alors que les sédiments prélevés au niveau des sites Chavoires et Puya présentent des compositions entre échantillons plus variables, se traduisant par la dispersion des points sur le plan de l'ACP.

Figure 8 : Analyse en composantes principales (ACP) des données ETM. L'insert représente la contribution de chaque ETM aux axes de l'ACP

La comparaison avec les concentrations mesurées par Frossard en 2018 confirme les fluctuations spatiales de la contamination métallique de la zone littorale du lac d'Annecy. L'Al, le Cr et le Fer n'avaient pas été mesurés par Frossard (2018). Le Cadmium était également en concentration inférieure à la limite de quantification. Si la majorité des concentrations sont du même ordre de grandeur que celles mesurés en 2018, il est toutefois possible de noter des différences, notamment pour Pb et Zn sur le site Puya (S11), tendant à confirmer l'exposition plus forte aux sources de contamination, observée pour les HAP, du point de prélèvement utilisé par Frossard en 2018 (Tableau 2).

Au regard des critères de qualité des sédiments définis dans la version 2 du SEQ-Eau (Tableau 1), les sédiments de la zone littorale du lac peuvent être qualifiés de « bon » pour la teneur en ETM.

A titre de comparaison, les concentrations en ETM dans les sédiments superficiels du lac Léman en 2015 étaient en moyenne 2 à 7 fois supérieures à celles mesurées pour la zone littorale du lac

d'Annecy en 2019, avec des valeurs de 0,23 μg Hg g⁻¹, 0,49 μg Cd g⁻¹, 61 μg Cr g⁻¹, 49 μg Cu g⁻¹, 30 μg Pb g⁻¹ et 125 μg Zn g⁻¹ (Loizeau 2017).

Site	Année	Al	Cr	Fe	Cu	Pb	Zn	Sn
Doussard	2019	2806	8,7	9887	6,9	6,8	34,9	<5
(S8, Frossard)	2018	nq*	nq	nq	<lq*< td=""><td><lq< td=""><td>44,6</td><td>1,9</td></lq<></td></lq*<>	<lq< td=""><td>44,6</td><td>1,9</td></lq<>	44,6	1,9
Риуа	2019	3661	9,6	2981	9,9	12,8	28,1	<5
(S11, Frossard)	2018	nq	nq	nq	10,1	49,8	38,8	7,1
Chavoires	2019	3793	31,5	8470	23,5	12,9	91,3	<5
(S16, Frossard)	2018	ng	ng	ng	<la< td=""><td>6,3</td><td>27,0</td><td>1,6</td></la<>	6,3	27,0	1,6

Tableau 2 : Concentrations moyennes en ETM (mg.kg⁻¹ MS) mesurées en 2018 et 2019 (*nq = non quantifié, *lq = limite de quantification)

Le site de la Puya présente des facteurs d'enrichissement plus faible que le site de Chavoires pour tous les ETM, sauf pour le plomb. Pour ce métal, les sédiments en contiennent presque deux fois plus (en moyenne) pour les deux sites du Nord du lac que sur le site de Doussard. Malgré la fin d'usage des essences additivées au plomb, cette contamination est toujours liée à la circulation véhiculaire routière, en raison de sa présence dans les masses d'équilibrage des roues des véhicules. Les eaux de ruissellement de chaussées contiennent des concentrations non négligeables en Cd, Cu, Pb et Zn (Lamprea Maldonado, 2009). Cette source de pollution peut donc expliquer les niveaux de contamination pour ces 4 ETM au niveau des sites Chavoires et Puya. Ces deux sites, sous influence d'eaux de ruissellement de la D1508 pour Puya et d'eaux du réseau pluvial d'Annecy le Vieux pour Chavoires, sont en effet enrichis en Cr, Cu et Pb (auquel s'ajoute le Zn seulement pour Chavoires).

La contamination en HAP et ETM diffère à la fois quantitativement et qualitativement pour les trois sites étudiés. Le site Doussard peut être validé comme site de référence du fait des faibles concentrations en HAP et en ETM d'origine anthropique. Des concentrations non négligeables en HAP légers (Naphtalène et Phénantrène) et en Fer (probablement terrigène) caractérisent ce site. Une origine atmosphérique et issue du bassin versant rural explique vraisemblablement la contamination du site Doussard. Les sites Puya et Chavoires présentent une contamination modérée (Chavoires) à relativement forte (Puya) en HAP majoritairement lourds et une contamination significative en ETM. Une origine routière et de drainage de surfaces imperméabilisées du bassin-versant urbain est la source probable de cette contamination pour ces deux sites. Les résultats obtenus sont en bonne adéquation avec ceux de Frossard (2018) pour les ETM (même ordre de grandeur) et pour les HAP (bien que le site Puya est environ 10 fois moins contaminé que le point S11). Des localisations géographiques différentes entre les points de prélèvement utilisés en 2018 et 2019 expliquent vraisemblablement les écarts de concentration observés.

Variabilité spatiale de la contamination

Les HAP

Pour la somme des 16 HAP, la variabilité spatiale diffère pour les 3 sites d'étude mais reste relativement faible (Annexe « Variabilité spatiale des HAP totaux par site »). Pour les sites Chavoires et Doussard, la contamination tend à diminuer avec l'éloignement de la rive du lac (zone S-W pour Chavoires et zone N-W pour Doussard) contrairement au site Puya, pour lequel des concentrations élevées sont observées au N-W de la zone de prélèvement (proximité rive), au centre, et au N-E (zone éloignée de la rive). La forte pente du fond du lac en ce site peut expliquer cette disparité de contamination, avec des remobilisations probablement plus fortes des sédiments déposés que pour les deux autres sites où le fond est beaucoup moins pentu.

Les ETM

Pour les ETM, la variabilité spatiale diffère pour chaque élément métallique (Annexe « Variabilité spatiale des ETM par site »). Les apports via le rejet des eaux de ruissellement urbain au débouché du collecteur à Chavoires impactent clairement les concentrations, avec une diminution progressive de la contamination vers le Sud.

Pour le site Puya, la zone la plus occidentale du site est moins contaminée, alors qu'elle est pourtant proche des apports des eaux de ruissellement de chaussée. Ce constat peut s'expliquer soit par un renouvellement du sédiment lié à la forte pente sur ce site (la zone d'accumulation probable des sédiments est de fait plus enrichie en ETM), soit par la surface spécifique plus faible (950 m²/g vs 1400 m²/g) des particules de sédiment, offrant une capacité de sorption des ETM plus faible.

Pour le site de Doussard, la zone N-W de la surface échantillonnée est la plus contaminée pour presque tous les ETM. Les apports du bassin versant via l'Ire, dont l'exutoire au lac est situé au nordouest de la zone de prélèvement, peuvent être suspectés.

Risque écologique de la contamination en HAP et ETM des sédiments superficiels

Les HAP

Le risque toxique pour les organismes aquatiques est évalué individuellement pour chaque HAP par le rapport de leur concentration à leur valeur de PEC (Figure 9). Pour Chavoires et Doussard, les PEC_{individuelles} sont inférieures à 0,1 suggérant des concentrations ne présentant pas de risque, à l'exception du Phénanthrène (PEC_{individuelles} comprises entre 0,1 et 0,5) pour lequel un risque écotoxique est possible. En revanche, le site Puya se distingue des deux autres sites pour six congénères, dont 5 (BaA, BaP, Chr, Fla, Pyr) représentent un risque possible de toxicité pour la vie aquatique et 1 (BghiP) représente un risque probable voire avéré.

Figure 9: Evaluation du risque écologique lié aux HAP selon les PEC (probable effect concentration). Les lignes rouges séparent les niveaux de risque : < 0.1 = risque négligeable, 0.1 < x < 0.5 = risque possible, 0.5 < x < 1 = risque probable, > 1 = risque avéré.

En considérant la PEC_{moyenne}, le risque écotoxicologique est en moyenne négligeable pour les trois sites. Pour quelques points de prélèvement à Puya et Chavoires, le risque est toutefois possible (Figure 10). Comparativement à Frossard (2018), le risque HAP est similaire pour Doussard, légèrement inférieur pour Chavoires et fortement inférieur pour Puya qui présentait une PEC_{moyenne} de 1,5 en 2018 contre <0,1 en 2019.

L'utilisation de ces valeurs moyennes peut conduire à une sous-estimation du risque toxique en raison d'un effet additif des contaminants sur un organisme (effet « cocktail »). L'utilisation de la

PEC_{somme}, plus représentative, met alors en évidence un risque possible pour Doussard et Chavoires et un risque avéré Puya (Figure 10).

Figure 10: Evaluation du risque écologique lié aux HAP en considérant la moyenne et la somme des ratios HAP/PEC. Les lignes rouges représentent les niveaux de risque : < 0.1 = risque négligeable, 0.1 < x < 0.5 = risque possible, 0.5 < x < 1 = risque probable, > 1 = risque avéré.

Les ETM

Le risque individuel de chaque ETM diffère entre les 3 sites d'étude avec des PEC_{individuelles} très majoritairement inférieures à 0,1 pour les sites Doussard et Puya (Figure 11). Malgré les plus fortes concentrations en Pb au site Puya, les PEC_{individuelles} sont proches de 0,1, n'indiquant pas de risque en lien avec cette contamination. Différemment, le site Chavoires présente des PEC_{individuelles} comprises en 0,1 et 0,5 pour Cr, Cu et Zn suggérant un risque possible pour ces trois ETM (Figure 11).

Lorsque le risque est évalué en considérant l'ensemble des ETM, le site Chavoires présente un risque possible ($PEC_{moyenne}$ comprise entre 0,1 et 0,5) alors que la contamination métallique des sites Doussard et Puya ne présente pas de risque ($PEC_{moyenne} < 0,1$). Comparativement à Frossard (2018), les résultats sont similaires pour le site Doussard, plus faibles pour le site Puya et plus élevés pour le site Chavoires.

En considérant les PEC_{somme}, représentative d'un effet additif de la contamination en ETM, la contamination métallique du site Chavoires représente un risque toxique probable pour les organismes aquatiques, et un risque possible pour les sédiments de Doussard et Puya.

Figure 11 : Evaluation du risque écologique pour les ETM selon les valeurs de PEC. Les lignes rouges représentent les niveaux de risque : < 0.1 = risque négligeable, 0.1 < x < 0.5 = risque possible, 0.5 < x < 1 = risque probable, > 1 = risque avéré.

Le risque de toxicité pour la vie aquatique a été évalué par le ratio des concentrations mesurées sur des valeurs de référence correspondant à des effets probables sur les organismes aquatiques (« Probable Effect Concentration »). Du fait de la variabilité spatiale des contaminants à l'échelle des sites, les risques toxiques de chaque contaminant peuvent varier fortement au sein d'un site, sans pour autant représenter en moyenne un risque effectif pour les organismes aquatiques. Le site Puya présente une contamination moyenne associée un risque possible à probable pour la plupart des HAP quantifiés (7 HAP sur 11) et le site Chavoires présente un risque possible pour les ETM Cr, Cu et Zn. En utilisant la moyenne des ratios, aucun des trois sites ne présente un risque en terme de HAP et seul le site Chavoires présente un risque possible pour les ETM. Ces résultats sont similaires à ceux de Frossard (2018) concernant Doussard, et démontrent un risque plus faible pour HAP et ETM au site Puya et plus faible pour HAP mais plus élevé pour ETM à Chavoires. En considérant l'effet toxique additif des contaminants, le risque toxique des HAP est possible pour Doussard et Puya, et probable pour La risque lié à la contamination en ETM est possible pour Doussard et Puya, et probable pour Chavoires.

Conclusion

En raison du bon, voire très bon, état actuel du compartiment pélagique du lac d'Annecy, suite aux importants efforts entrepris par les gestionnaires pour la maitrise des apports en nutriments (particulièrement le phosphore), la maitrise des pressions anthropiques que peut subir la zone littorale est un nouveau défi afin d'assurer le maintien d'un bon état écologique de l'ensemble du lac d'Annecy. La présente étude prolonge les premières investigations menées par Frossard en 2018 afin d'identifier une facette encore peu étudiée des pressions anthropiques sur les lacs : la contamination en HAP et ETM de la zone littorale.

L'ensemble des investigations menées mettent en évidence de fortes similarités avec l'étude réalisée en 2018 (plus forte contamination en HAP du site Puya et plus faible contamination en HAP et ETM du site Doussard) mais révèle aussi des différences (plus faible contamination en HAP du site Puya et plus forte contamination du site Chavoires en 2019 comparativement à 2018).

En absence de réglementation française spécifique au risque écotoxique de ces substances, une approche par ratios (moyennes et sommes des ratios PEC) a été retenue pour évaluer le risque HAP et ETM pour la vie aquatique. Les sites Puya et Chavoires présentent des concentrations en contaminants (HAP ou ETM) suffisantes pour induire des effets toxiques pour les organismes aquatiques, et ainsi altérer la qualité écologique de la zone littorale des sites concernés. Les sources probables de ces contaminants, ruissellement sur les surfaces imperméabilisées du bassin versant urbain ou des voies de circulation routière, permettent d'envisager des actions visant à limiter les apports de contaminants à la zone littorale lacustre concernée, en complément des actions déjà menées pour restaurer ou préserver la qualité écologique de la zone pélagique.

Bibliographie

Frossard et al. (2018). Contamination littorale du lac d'Annecy par les hydrocarbures aromatiques polycycliques (HAP) et les éléments traces métalliques (ETM) : Origines, risques et transfert biologique – Rapport d'étude (ALP-FDAAPPMA74), 36 p.

Jia et Batterman. (2010). A critical review of naphthalene sources and exposures relevant to indoor and outdoor air. International journal of environmental research and public health, 7(7), 2903–2939.

Lallée et Naffrechoux. (2009). Etude bibliographique de la contamination des milieux lacustres par les micropolluants (PCB HAP) - Application au lac d'Annecy. Rapport d'étude (SILA), 50 p.

Lécrivain, et al. (2018). Multi-contamination (heavy metals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons) of littoral sediments and the associated ecological risk assessment in a large lake in France (Lake Bourget), Science of The Total Environment, 619 :620, 854-865.

Loizeau et al. (2017). Micropolluants métalliques et organiques dans les sédiments superficiels du Léman. Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 2016, 153-207.

Long et MacDonald. (1998). Recommended Uses of Empirically Derived, Sediment Quality Guidelines for Marine and Estuarine Ecosystems. Hum. Ecol. Risk Assess. Int. J. 4, 1019–1039.

MacDonald et al. (2000). Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology 39:20-31.

Poma et al. (2017). Persistent organic pollutants in sediments of high-altitude Alpine ponds within Stelvio National Park, Italian Alps, Inland Waters, 7:1, 34-44

Annexes

		-	Al		Cd		Cu		Pb	ç	Sn	Zr	า	
P	EC (μg .g ⁻¹	MS)	33		5		149		128	non	défini	45	9	
	Ace	Flu	Phe	Ant	Fla	Pyr	BaA	Chr	BbF	BkF	BaP	BghiP	DbahA	lp
PEC (ng g ⁻¹ MS)	128	536	561	845	2230	1520	1050	1290	13400	13400	1450	3200	135	3200

Annexe 1 : Valeur de concentration d'effet probable (PEC) des contaminants

Annexe 2 : Variations des concentrations en HAP normalisées à la concentration en matière organique (MO) pour les différents sites.

Les propriétés hydrophobes des HAP lourds favorisent leur adsorption sur les particules solides (les plus petites et les plus riches en matière organique). Les concentrations en HAP normalisées à la teneur en matière organique du sédiment (MO) présentés ci-dessous permettent d'évaluer de possible biais de comparaison inter-sites liés à ces propriétés physico-chimiques. La concentration en HAP du sédiment normalisée à la MO est alors exprimée en µg kg⁻¹ MO.

Annexe_Figure 2 : Concentrations en HAP normalisées à la concentration en matière organique du sédiment de l'échantillon.

Annexe 3 : Facteurs d'enrichissement HAP et ETM

Les facteurs d'enrichissement sont des indices permettant de quantifier des niveaux de contamination dans les sédiments par rapport à une référence. Ils expriment les enrichissements d'origine anthropique par rapport à des références géochimiques correspondant un état « référentiel » considéré ici comme étant le site Doussard. Le facteur d'enrichissement est utilisé dans cette étude pour évaluer la part anthropique de la pollution.

Le facteur d'enrichissement pour un HAP ou ETM (FE(X)) correspond au ratio entre sa concentration [X] dans l'échantillon et la moyenne des concentrations de ce contaminant du site Doussard [X]_{moy_ref} selon équation :

$$FE(X) = \frac{[X]}{[X]_{moy_ref}}$$

Les concentrations en métaux ont aussi été normalisées par l'Aluminium afin de limiter l'influence de la variabilité minéralogique naturelle des sédiments. En effet, l'Aluminium est considéré comme un élément conservatif, généralement peu enrichi par les activités humaines et associé à des phases peu altérables ou peu solubles. Ses concentrations sédimentaires dépendent ainsi principalement de la composition minéralogique des sédiments.

Le $FE(X)_{ETM_norm}$ d'un élément métallique X est ainsi calculé selon l'équation :

$$FE(X)_{ETM_norm} = \frac{\frac{[X]_{ech}}{[Al]_{ech}}}{\frac{[X]_{moy_ref}}{[Al]_{moy_ref}}}.$$

avec $\frac{[X]_{ech}}{[Al]_{ech}}$: le ratio entre la concentration sédimentaire de l'ETM et celle de l'Aluminium dans l'échantillon analysé et $\frac{[X]_{moy_ref}}{[Al]_{moy_ref}}$: le ratio entre la concentration sédimentaire moyenne de l'ETM et celle de l'Aluminium pour le site de Doussard considéré comme le site de référence.

Les résultats obtenus en considérant des facteurs d'enrichissement normalisés à l'Aluminium (Annexe_Figure 3C) sont très similaires du point de vue de leurs tendances par rapport aux facteurs d'enrichissement non-normalisés à l'Aluminium mettant en évidence une contamination généralement plus importante des sites Chavoires et Puya comparativement au site Doussard excepté pour le Fer qui présente des facteurs d'enrichissement normalisés à l'Aluminium systématiquement inférieures à 1.

Annexe_Figure 3A : Variations de l'enrichissement en HAP des sites Chavoires et Puya par rapport au site de référence Doussard. La ligne rouge correspond des concentrations identiques à la référence.

Annexe_Figure 3B : Variations de l'enrichissement en ETM des sites Chavoires et Puya par rapport au site de référence Doussard. La ligne rouge représente des concentrations identiques à la référence.

Annexe_Figure 3 : Facteurs d'enrichissement ETM des sites Chavoires et Puya par rapport au site de référence Doussard . La ligne rouge représente un ratio ETM/Al identique au ratio moyen du site Doussard.

Variabilité spatiale des HAP totaux par site

Variabilité spatiale des ETM par site

Annexe 4 : Données brutes HAP et ETM des différents sites

ETM (μg/g)	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
AI	2986	2736	2243	2666	2977	3143	2495	2895	1995	2105	3348	3351	3073	2953	3121
Cd	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Cr	9	8	8	8	9	9	9	9	7	8	10	10	9	9	9
Cu	6	7	7	7	7	8	7	8	7	5	7	7	7	7	7
Sn	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Fe	9388	9760	9255	8606	9681	11128	10436	9386	8047	7873	11578	11733	11042	10374	10016
Hg	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
Pb	6	7	7	6	7	8	7	7	3	6	8	8	8	7	7
Zn	32	34	34	32	35	35	34	34	34	33	35	36	40	38	37
HAP (ng/g)															
Ace	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Асу	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Ant	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
BaA	25	25	25	66	25	25	25	25	25	25	25	25	25	25	25
BaP	25	25	25	55	25	25	25	25	25	25	25	25	25	25	25
BbF	25	66	56	85	25	25	59	25	25	50	25	25	65	25	25
BghiP	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
BkF	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Chr	25	25	25	63	25	25	25	25	25	25	25	25	25	25	25
DBahA	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Fla	72	108	93	155	69	68	90	73	67	83	70	77	101	25	66
Flu	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
IcdP	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Naph	132	133	128	130	136	122	136	127	119	122	126	130	68	66	65
Phe	185	180	175	195	167	181	177	179	174	165	157	179	101	77	107
Pyr	25	67	60	105	25	25	61	50	25	53	25	53	69	25	25
Σ16	714	829	787	1054	697	696	798	729	685	748	678	689	679	493	563
surface spécifique - m2/kg	567,0	730,0	789,3	758,9	774,3	897,8	863,2	790,9	778,0	580,3	836,6	838,7	886,9	851,7	746,0
diam médian en vol Dv(50) - μm	55 <i>,</i> 3	44,4	39,1	41,5	41,0	35,4	36,0	41,4	38,3	62,3	44,1	39,7	38,3	38,6	45,3
perte au feu à 550°C - %sec	4,2	4,8	4,8	4,1	4,2	5,0	5,1	4,6	4,6	3,6	4,7	4,7	4,5	4,4	4,4

Données brutes pour le site Doussard, valeurs initialement < LOQ remplacées par 50%LOQ

									50	544	544	54.5		544	545		Ecart-
ETM (μg/g)	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	Moyenne	type
AI	3118	3038	2927	2819	3765	1858	1885	24/04	2359	2930	585	1167	1214	943	1604	3661,1	5896,0
Ca	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1,0	0,0
Lr Cr	13	13	13	12	14	9	9	11	10	12	2,5	6	6	5	8	9,6	3,5
Cu	11	12	11	11	13	9	10	10	10	11	5	6	2.5	9	13	9,9	2,4
Sn Fa	2,5	2,5	2,5	2,5	6 4050	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,7	0,9
Fe	4911	4476	4934	4255	4950	100	170	3/34	31/8	3652	1695	0.25	1824	2181	2825	2981,5	1631,7
	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	12.0	0,0
P0 75	22	21	22	1/	42	12	10	13	20	25	12	2,5	9	0	/ 20	12,8	0,3
20	35	57	33	33	42	25	27	29	30	35	12	14	20	21	28	28,1	8,5
	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	0
Ace	54	25	25	25	25	25	25	50	62	68	25	25	25	25	25	2.5	16
Ant	94 84	25	25	51	53	25	25	142	58	92	25	25	25	25	25	47	35
BaA	254	147	127	198	150	128	92	451	187	279	68	25	51	25	25	147	116
BaP	296	178	142	227	183	154	109	480	219	311	79	25	65	56	25	170	124
BbF	468	291	220	335	300	226	158	680	320	469	119	57	99	90	74	260	177
BghiP	266	167	117	194	178	139	93	359	177	248	69	25	66	59	50	147	93
BkF	165	105	85	126	106	82	62	241	118	165	25	25	25	25	25	92	65
Chr	249	142	125	190	147	124	87	427	183	273	68	25	52	25	25	143	111
DBahA	88	55	25	66	59	25	25	123	61	86	25	25	25	25	25	49	31
Fla	599	287	224	399	328	267	187	892	395	581	130	63	98	85	68	307	237
Flu	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	0
IcdP	247	153	109	176	161	121	86	320	162	224	64	25	56	50	25	132	86
Naph	89	84	70	80	122	67	59	106	73	82	73	63	56	62	57	76	19
Phe	346	145	103	199	159	201	109	468	187	273	73	69	70	66	66	169	117
Pyr	461	223	171	309	252	206	145	704	304	446	103	52	78	69	55	239	184
Σ16	3716	2077	1618	2625	2273	1840	1312	5493	2556	3647	996	579	841	737	620	2062	1391
surface spécifique - m2/kg	1562,0	1317,0	1363,0	1463,0	1371	932,1	935,0	1043,0	1123,0	1168,0	742,4	937,2	865,7	867,7	961,0	1110	251
diam médian en vol Dv(50) - μm	18,0	23,6	21,7	19,7	22,2	33,5	35,1	32,9	29,7	28,5	80,1	40,2	45,0	45,9	35,5	34,1	15,4
perte au feu à 550°C - %sec	3,8	4,0	4,3	4,2	4,6	3,9	4,0	4,1	4,1	4,7	2,1	2,7	3,1	3,6	4,6	3,9	0,7

Données brutes pour le site Puya, valeurs initialement < LOQ remplacées par 50%LOQ

ETM (µg/g)	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15
Al	3899	4993	5470	4404	4215	4897	4215	2927	4057	2946	2767	4667	2840	2387	2214
Cd	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Cr	52	49	39	33	30	32	34	26	31	26	20	40	23	20	17
Cu	16	30	27	22	19	35	29	26	21	17	27	26	26	18	13
Sn	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Fe	10488	11349	10453	9119	8169	9372	9790	6868	8705	7451	6840	10275	7088	5955	5129
Hg	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
Pb	11	16	14	13	12	15	14	12	13	11	13	19	14	10	7
Zn	79	115	97	88	73	121	103	98	85	74	105	99	100	77	55
HAP (ng/g)															
Ace	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Асу	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Ant	25	25	25	25	25	25	25	25	25	25	25	90	25	25	25
BaA	69	77	25	99	54	25	25	25	25	25	62	56	66	25	25
BaP	79	92	65	113	76	58	25	25	56	64	68	52	73	25	25
BbF	118	137	99	165	107	94	62	83	79	106	110	90	111	65	25
BghiP	73	103	65	96	70	66	25	55	59	65	70	60	73	25	25
BkF	25	51	25	62	25	25	25	25	25	25	25	25	25	25	25
Chr	71	88	60	103	60	54	25	50	25	60	73	118	72	25	25
DBahA	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Fla	138	165	118	178	103	116	104	89	99	114	135	137	151	73	56
Flu	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
IcdP	63	81	53	81	60	50	25	25	25	53	54	25	55	25	25
Naph	60	65	63	59	66	70	74	92	84	68	71	67	70	65	57
Phe	101	117	108	99	99	114	167	79	97	91	108	91	118	72	65
Pyr	113	136	99	144	85	93	72	76	84	91	117	110	126	61	25
Σ16	1035	1237	905	1324	930	890	754	749	783	887	1018	1021	1065	611	503
surface spécifique - m2/kg	296,6	442,3	621,5	588	618,7	493,4	511,1	528,6	589,5	501	566	504,2	493,5	368,5	445,9
diam médian en vol Dv(50) - μm	212,8	103,5	59,3	64	61,9	79,5	87,5	88,3	75,2	97,1	77,7	81,5	106,6	139,8	134,4
perte au feu à 550°C - %sec	2,3	5,8	4,6	4,2	3,9	5,8	4,7	6,4	4,4	5,1	6,7	4,9	7,1	5,7	5,3

Données brutes pour le site Chavoires, valeurs initialement < LOQ remplacées par 50%LOQ

Annexe 5 : Date des prélèvements, localisation géographique et profondeurs pour l'ensemble des échantillons

site	ID	date	X (Lambert 93, m)	Y (Lambert 93, m)	profondeur (m)
doussard	D1	07/10/2019	950103,2	6526686,33	5,4
doussard	D2	07/10/2019	950085,7	6526676,2	5,6
doussard	D3	07/10/2019	950068,3	6526665,6	6,1
doussard	D4	07/10/2019	950050,5	6526654,9	5,7
doussard	D5	07/10/2019	950035,5	6526645	6,8
doussard	D6	07/10/2019	950092,4	6526700,7	8
doussard	D7	07/10/2019	950076,2	6526690	7
doussard	D8	07/10/2019	950058,8	6526679,5	6,1
doussard	D9	07/10/2019	950041	6526668,7	4,8
doussard	D10	07/10/2019	950026	6526658,8	2,8
doussard	D11	07/10/2019	950084,92	6526720,39	9
doussard	D12	07/10/2019	950069,1	6526710	8,1
doussard	D13	07/10/2019	950051,8	6526699,4	7,7
doussard	D14	07/10/2019	950034,2	6526689,1	7
doussard	D15	07/10/2019	950018,3	6526679,2	6,3
puya	P1	07/10/2019	943815,3	6536835,1	28,3
риуа	P2	07/10/2019	943813,8	6536814,6	30,8
puya	P3	07/10/2019	943816,4	6536856,5	27,6
риуа	P4	07/10/2019	943812	6536775,9	33,2
puya	P5	07/10/2019	943794,6	6536858,5	20,5
риуа	P6	07/10/2019	943793,4	6536838,3	21,5
puya	P7	07/10/2019	943792	6536817,7	22,5
риуа	P8	07/10/2019	943789,6	6536797	24,6
риуа	P9	07/10/2019	943787,1	6536779,1	25,6
риуа	P10	07/10/2019	943771,8	6536860,2	9,8
риуа	P11	07/10/2019	943768,7	6536840,6	10,7
риуа	P12	07/10/2019	943766,1	6536819,5	12
puya	P13	07/10/2019	943762,9	6536799,1	12,9
риуа	P14	07/10/2019	943760,1	6536780,9	15,1
риуа	P15	07/10/2019	943812,9	6536793,5	32,5
chavoires	A1	08/10/2019	944811,3	6538794,35	0,8
chavoires	A2	08/10/2019	944822,4	6538778,7	1
chavoires	A3	08/10/2019	944834	6538762,7	1,1
chavoires	A4	08/10/2019	944845,1	6538745,9	1,2
chavoires	A5	08/10/2019	944855,5	6538728,6	1,3
chavoires	A6	08/10/2019	944794,7	6538780,58	1,4
chavoires	A7	08/10/2019	944805,5	6538764,4	1,4
chavoires	A8	08/10/2019	944816	6538748,9	1,4
chavoires	A9	08/10/2019	944827,1	6538732,1	1,5
chavoires	A10	08/10/2019	944838	6538716,7	1,5
chavoires	A11	08/10/2019	944775,5	6538773,5	1,6
chavoires	A12	08/10/2019	944786,9	6538756,8	1,6
chavoires	A13	08/10/2019	944797,7	6538740,4	1,6
chavoires	A14	08/10/2019	944808,6	6538724	1,7
chavoires	A15	08/10/2019	944819,8	6538707,1	1,7